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Deformations of categories of coherent sheaves

via quivers with relations

Severin Barmeier and Zhengfang Wang

Abstract

We give an explicit description of the deformation theory of the Abelian category of
(quasi-)coherent sheaves on any separated Noetherian scheme X via the deformation
theory of path algebras of quivers with relations, by using any affine open cover of X,
or any tilting bundle on X, if available.

We also give sufficient criteria for obtaining algebraizations of formal deformations,
in which case the deformation parameters can be evaluated to a constant and the
deformations can be compared to the original Abelian category on equal terms. We give
concrete examples as well as applications to the study of noncommutative deformations
of singularities.

1. Introduction

A momentous result due to P. Gabriel [Gab62] and A. L. Rosenberg [Ros98, Bra18] shows that
any quasi-separated scheme can be reconstructed from its Abelian category of quasi-coherent
sheaves. Abelian categories which are “close to” categories of quasi-coherent sheaves on a variety
or scheme can thus be viewed as generalizations of commutative schemes and are of central
importance in noncommutative algebraic geometry.

In [LVdB05, LVdB06] W. Lowen and M. Van den Bergh developed a deformation theory for
abstract Abelian categories, controlled by a version of Hochschild cohomology H•

Ab for Abelian
categories, with first-order deformations parametrized by H2

Ab and obstructions lying in H3
Ab. For

a separated Noetherian scheme X over an algebraically closed field k of characteristic 0, Lowen
and Van den Bergh showed that the Hochschild cohomology of the Abelian categories

– Mod(OX) of all sheaves of OX -modules
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– Qcoh(X) of quasi-coherent sheaves

– coh(X) of coherent sheaves

are all isomorphic to the Hochschild cohomology HH•(X) of the scheme X.

For smooth X, first-order deformations are thus parametrized by

HH2(X) ≃ H0
(
Λ2TX

)
⊕H1(TX)⊕H2(OX) ,

where the isomorphism is given by the Hochschild–Kostant–Rosenberg decomposition [Swa96,
Yek02]. This shows that the deformation theory of Mod(OX), Qcoh(X) and coh(X) can be
understood as an amalgamation of quantizations of algebraic Poisson structures on X, classical
commutative deformations of X and deformations of the gerbe structure of OX (see § 3). Further
aspects of this deformation theory were studied for example in [BBP07, DHL22, DLL17, LL19].

Lowen and Van den Bergh showed that for any associative algebra A, one has an equivalence
of deformation theories

deformations of A
as associative algebra

deformations of Mod(A)
as Abelian category

(1.1)

and in case A is commutative, Mod(A) ≃ Qcoh(SpecA), so that this equivalence shows that
deformations of Qcoh(SpecA) are determined by associative deformations of A. (Note that “ge-
ometric” deformations of SpecA correspond to commutative deformations of A, which are trivial
if SpecA is smooth.)

If X is now a quasi-compact separated scheme, then we have an equivalence Qcoh(X) ≃
Qcoh(OX |U), where Qcoh(OX |U) is the Abelian category of quasi-coherent modules for the dia-
gram of algebras OX |U obtained by restricting the structure sheaf OX to an affine open cover U
closed under intersections. Lowen and Van den Bergh showed that in fact the full formal de-
formation theories of Mod(OX), Qcoh(X) and coh(X) are equivalent to the deformation theory
of OX |U as a twisted presheaf of associative algebras, which can be viewed as a “global” analogue
of (1.1) (see Theorem 3.1).

The deformation theory of a diagram of algebras is controlled by an L∞ algebra structure on
the Gerstenhaber–Schack complex of the diagram [GS88], which can be viewed as a generalization
of the classical Hochschild complex which controls the deformation theory of a single algebra – for
a single algebra, the Gerstenhaber–Schack complex coincides with the Hochschild complex. This
L∞ algebra structure controlling formal deformations of diagrams of algebras, or more generally
of prestacks, was constructed by H. Dinh Van and W. Lowen [DL18]. Their construction uses
(a categorical analogue of) the observation [GS88] that with any diagram A of algebras, one
can associate a single algebra A!, whose deformation theory is also equivalent to that of the
diagram A.

In the case of a single algebra, this L∞ algebra structure recovers the classical DG Lie al-
gebra structure on the Hochschild complex given by the Gerstenhaber bracket. Although these
higher structures on the Gerstenhaber–Schack complex give a natural obstruction calculus for
deformations of diagrams of algebras, it is not clear how to construct formal deformations from
this point of view. For example, already for the single algebra A = k[x1, . . . , xd], that is, the
algebra of global functions on affine space Ad, the explicit construction of a formal deformation
is nontrivial – formal deformations of Qcoh

(
Ad

)
≃ Mod(A) are given by deformation quantiza-

tions of Poisson structures on Ad which were constructed by M. Kontsevich as part of the proof
of his formality conjecture [Kon03, Kon01], and the explicit formula uses certain integrals over
configuration spaces of points which are related to multiple zeta values [BPP20].
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In [BW20] we used the combinatorics of reduction systems to give a description of the defor-
mation theory of arbitrary path algebras of quivers with relations and showed how this approach
can be used to produce explicit combinatorial quantizations of Poisson structures by writing
k[x1, . . . , xd] = k⟨x1, . . . , xd⟩/(xjxi − xixj)1⩽i<j⩽d and systematically deforming the ideal of re-
lations. In the present article we “globalize” this approach to describe the deformation theory
of Qcoh(X) for any separated Noetherian scheme X.

The basic theoretical idea of [BW20] is to replace the bar resolution, giving rise to the
Hochschild cochain complex, by a smaller, combinatorial, resolution available for path algebras
of (finite) quivers with relations. This resolution was constructed by M. J. Bardzell [Bar96, Bar97]
for monomial relations and by S. Chouhy and A. Solotar [CS15] in the general case by using
the combinatorics of reduction systems. We show in § 2.3 that for any affine hypersurface A =
k[x1, . . . , xd]/(f) this resolution is isomorphic to the classical BACH resolution [GGRV92].

The deformation theory of path algebras of quivers with relations can then be studied via
a natural L∞ algebra structure on the corresponding cochain complex of this smaller resolution,
obtained by homotopy transfer from the DG Lie algebra structure on the (shifted) Hochschild
cochain complex. We denote the resulting L∞ algebra by p(Q,R), where Q is the quiver and R
a reduction system for the ideal of relations. This point of view gives a systematic method of
deforming the ideal of relations and allowing one to construct explicit formal deformations of
such path algebras, as well as give sufficient criteria for the existence of an algebraization.

In the present article we show how to use this point of view to give an explicit description
of the deformation theory of the diagram algebra OX |U!, where X is any separated Noetherian
scheme and OX |U is the restriction of the structure sheaf of X to any affine open cover U of X
which is closed under intersections. The approach via reduction systems allows one to deform
the diagram of algebras by deforming the relations appearing in the diagram. By the above-
mentioned results of [LVdB05, LVdB06], this gives an explicit description of the deformation
theory of Mod(OX), Qcoh(X) and coh(X). Our first main result can be phrased as follows.

Theorem 1.2 (Theorem 3.11). Let X be any separated Noetherian scheme, and let U be
any affine open cover of X closed under intersections. Then there is an explicit L∞ algebra
p
(
Qdiag, Rdiag

)
controlling the deformation theory of the diagram algebra OX |U! and of the Abe-

lian categories Mod(OX), Qcoh(X) and coh(X).

This theorem relies on the construction of a quiver Qdiag, whose vertices correspond to open
sets in the cover U, and a finite reduction system Rdiag which together encode the diagram
algebra OX |U!. Here, the Noetherian condition on the scheme X ensures that the individual
algebras OX(U) for each U ∈ U are finitely generated, so that the quiver Qdiag is finite. The
reduction system Rdiag is obtained by “gluing” finite reduction systems arising from Gröbner
bases of the commutative algebras OX(U) for U ∈ U. Deformations of the diagram algebra
can then easily be viewed as deformations of the diagram OX |U and are thus very close to the
geometry in the sense that the Abelian category of quasi-coherent modules over a deformation
of OX |U can be viewed as a direct analogue of Qcoh(X).

The use of reduction systems and Gröbner bases gives a combinatorial description of the de-
formation theory of Qcoh(X) which is surprisingly workable. However, the number of generators
and relations for the diagram algebra increases with the dimension and with the number of affine
charts needed to cover X, so the following alternative description can also be useful.

In case X admits a tilting bundle E , the deformation theory of Mod(OX), Qcoh(X) and
coh(X) can also be described more economically via the deformation theory of End E , which can
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also be naturally written as the path algebra of a quiver with relations, where now each vertex in
the quiver corresponds to a direct summand of E . The algebra End E is always much “smaller”
than the diagram algebra – for example, it is finite-dimensional if X is projective – but since one
has to pass through a derived equivalence D(X) ≃ D(End E), this point of view is not quite as
close to the geometry. Our second main result is the following.

Theorem 1.3 (Theorem 3.18). Let X be any separated Noetherian scheme, and let E be a
tilting bundle on X. Write End E = kQtilt/I, and let Rtilt be any reduction system satisfying (⋄)
for I. Then p

(
Qtilt, Rtilt

)
controls the deformation theory of the Abelian categories Mod(OX),

Qcoh(X) and coh(X).

Theorems 1.2 and 1.3 should generally be understood in the context of formal deformation
theory. In [BW20, § 9] we gave criteria for the existence of algebraizations of formal deformations,
by using the notion of admissible orders ≺ on the set of paths of the quiver. In particular, this
allows one to construct algebraic varieties V≺ of “actual” deformations obtained by evaluating
the deformation parameters to a constant. In view of the Gabriel–Rosenberg reconstruction
theorem [Gab62, Ros98, Bra18], the resulting deformations of the Abelian categories or algebras
can be viewed as noncommutative schemes which are “close to” the original scheme and can be
compared to it on equal footing.

In examples, namely for the smooth quasi-projective surfaces Zk = TotOP1(−k), we show
how to use this idea to obtain explicit families of actual deformations for the Abelian categories
Qcoh(Zk), which also give rise to explicit families of generally noncommutative deformations of
the 1

k (1, 1) surface singularities.

1.1 Structure of the article

In § 2, we briefly recall the main results of [BW20] which allow us to study deformations of
path algebras of quivers with relations via the combinatorics of reduction systems. In § 3 we
show how to apply these techniques to study the deformation theory of Qcoh(X) and prove
Theorems 1.2 and 1.3. In § 4 we illustrate the deformation–obstruction theory for the category
of (quasi)coherent sheaves for a particular class of smooth quasi-projective surfaces, namely
Zk = TotOP1(−k). In § 5 we show how to apply the deformation theory of path algebras of quivers
with relations to study noncommutative deformations of singularities, which we illustrate for the
cyclic surface singularities of type 1

k (1, 1) by applying the results for the deformation theory of
Qcoh(Zk) obtained in § 4.

2. Deformations of path algebras of quivers with relations

Let Q be a finite quiver, let kQ denote its path algebra, and let I ⊂ kQ be any two-sided ideal
of relations. The quotient algebra A = kQ/I is a path algebra of a quiver with relations, and
any finitely generated algebra is of this form. In [BW20] we showed how to obtain a complete
description of the deformation theory of A for any finite quiver Q and any ideal of relations I via
the combinatorics of reduction systems. We will give a brief summary of the construction here
and refer to [BW20] for details.

2.1 Deformations via the Hochschild complex

Classically, the formal deformation theory of an associative algebra A is controlled by the
Hochschild cochain complex C•(A,A) =

(
Homk

(
A⊗k•, A

)
, d
)
equipped with the Gerstenhaber
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bracket [−,−].

We have a DG Lie algebra h(A) =
(
C•+1(A,A), d, [−,−]

)
whose Maurer–Cartan elements are

precisely associative multiplications A⊗kA A. This DG Lie algebra naturally controls formal
deformations of A.

Note that Homk
(
A⊗kn, A

)
≃ HomAe(Barn(A), A), where Bar•(A) is the bar resolution

· · · A⊗k A
⊗kn ⊗k A · · · A⊗k A⊗k A A⊗k A

which is a projective resolution of A viewed as a bimodule over itself.

2.2 Deformations via reduction systems

If A ≃ kQ/I for some finite quiver Q and some two-sided ideal I ⊂ kQ, Chouhy and Solotar con-
structed a smaller A-bimodule resolution of A via the combinatorics of reduction systems [CS15].
This projective resolution can be used instead of the bar resolution to describe the full deforma-
tion theory of A. We briefly recall the basic notions and refer to [BW20] for more details.

2.2.1 Reduction systems. The following notion of a reduction system was introduced by
G.M. Bergman [Ber78] in the statement and proof of his diamond lemma.

Definition 2.1 (Bergman [Ber78, § 1]). A reduction system R for kQ is a set of pairs

R = {(s, φs) | s ∈ S and φs ∈ kQ} ,

where

– S is a subset of Q⩾2 such that s is not a subpath of s′ when s ̸= s′ ∈ S;

– s and φs are parallel for all s ∈ S;

– φs is irreducible (that is, it is a linear combination of irreducible paths) for all s ∈ S.

Here a path is irreducible if it does not contain elements in S as a subpath, and we denote by
IrrS = IrrS(Q) = Q• \Q•SQ• the set of all irreducible paths.

Given a two-sided ideal I of kQ, we say that a reduction system R satisfies the condition
(⋄) for I if

(i) I is equal to the two-sided ideal generated by the set {s− φs}(s,φs)∈R;

(ii) every path is reduction-finite and reduction-unique; that is, every path can be “reduced”
to a unique element in kIrrS by repeatedly replacing subpaths s ∈ S by φs.

As a consequence of the diamond lemma [Ber78, Theorem 1.2], it follows that if R satisfies (⋄)
for an ideal I ⊂ kQ, then the set IrrS of irreducible paths forms a k-basis of the quotient algebra
A = kQ/I. We write

π : kQ A = kQ/I

for the projection.

In particular, the deformation theory of A = kQ/I via a reduction system R described below
in § 2.2.3 can be understood as deforming the algebra in the basis IrrS determined by R.

Remark 2.2. A reduction system R = {(s, φs)} is uniquely determined by the set S ⊂ Q⩾2

together with an element φ ∈ Hom(kS, kIrrS) so that φ(s) = φs for each s ∈ S. (Here Hom
denotes the set of kQ0-bimodule homomorphisms.)

Note that the diamond lemma implies in particular that we may identify A ≃ kIrrS and thus
Hom(kS, kIrrS) ≃ Hom(kS,A).
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Remark 2.3. Reduction systems “always exist”. More precisely, we have the following two facts:

(i) For any finite quiver Q and any two-sided ideal I ⊂ kQ, there exists a reduction system R
satisfying (⋄) for I (see [CS15, Proposition 2.7]). However, if kQ/I is noncommutative, it
is in general undecidable whether there exists a finite reduction system, even if I is finitely
generated.

(ii) Any Gröbner basis for I gives rise to a reduction system R = {(s, φs)} (see for exam-
ple [BW20, § 3.3.1]). In particular, if kQ/I is commutative, then I always admits a finite
Gröbner basis [EPS98], which gives rise to a finite reduction system.

2.2.2 Higher ambiguities. We now recall the definition of n-ambiguities, which will be used
to construct a projective A-bimodule resolution of A.

Definition 2.4. Let p ∈ Q⩾0 be a path. If p = qr for some paths q, r, we call q a proper left
subpath of p if p ̸= q.

Now let n ⩾ 0. A path p ∈ Q• is an n-ambiguity if there exist a u0 ∈ Q1 and irreducible
paths u1, . . . , un+1 such that

(i) p = u0 · · ·un+1;

(ii) for all i, the path uiui+1 is reducible, and the path uid is irreducible for any proper left
subpath d of ui+1.

Now let S0 = Q0, S1 = Q1, S2 = S, and let Sn+2 for n ⩾ 1 denote the set of n-ambiguities.
Generalizing Bardzell’s resolution for monomial algebras [Bar96, Bar97], Chouhy–Solotar [CS15]
constructed a smaller A-bimodule resolution P• of A = kQ/I associated with any reduction
system R = {(s, φs) | s ∈ S} satisfying (⋄) for I,

· · · ∂n+1
Pn

∂n Pn−1
∂n−1 · · · ∂2 P1

∂1 P0 , (2.5)

where Pn = A⊗kSn⊗A and the augmentation map ∂0 : A⊗A A is given by the multiplication
of A. A recursive formula for the differential is given in [BW20, Theorem 4.2].

2.2.3 An explicit L∞ algebra. Using this smaller resolution, we obtained the following result.

Theorem 2.6 ([BW20, § 7]). Let A = kQ/I. Then there exists an L∞ algebra p(Q,R) with under-
lying cochain complex P •+1 = HomAe(P•+1, A) and an L∞ quasi-isomorphism between p(Q,R)
and the DG Lie algebra h(A) = (HomAe(Bar•+1(A), A), d, [−,−]).

As a consequence, the L∞ algebra p(Q,R) controls the deformation theory of A.

With any complete local Noetherian k-algebra (B,m) – the base of the deformation, for
example B = kJtK and m = (t) – and any element φ̃ ∈ P 2 ⊗̂ m, we may associate a certain
combinatorially defined operation ⋆φ+φ̃ : A ⊗ A A ⊗̂ B, which we call combinatorial star
product (see [BW20, Definition 7.18]). This operation can be described by performing rightmost
reductions with respect to the new formal reduction system

R̂φ+φ̃ = {(s, φs + φ̃s) | s ∈ S} ,

where φ̃s ∈ kIrrS ⊗̂m is the image of φ̃(s) under the natural isomorphism kIrrS ≃ A.

This can be understood as follows. Given any two irreducible paths u, v ∈ IrrS , the concatena-
tion uv is not necessarily irreducible. The multiplication in A is given by repeatedly replacing any
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subpath s of uv with s ∈ S by φ(s). Since the reduction system R is assumed to be reduction-
unique, this process finishes after finitely many steps and does not depend on the choice of
subpath at each step. The operation ⋆φ+φ̃ is defined similarly with the only difference being
that one starts with uv and repeatedly replaces the rightmost subpath s ∈ S with (φ + φ̃)(s).
(See [BW20, § 10] and Remark 4.9 for a graphical description of ⋆φ+φ̃ for the polynomial algebra
A = k[x1, . . . , xd].)

This combinatorial operation ⋆φ+φ̃ can be used to give the following necessary and sufficient
condition for φ̃ to be a Maurer–Cartan element.

Theorem 2.7 ([BW20, Theorem 7.37]). Let φ̃ ∈ Hom(kS,A) ⊗̂m, and write ⋆ = ⋆φ+φ̃. Then φ̃
satisfies the Maurer–Cartan equation of p(Q,R) ⊗̂ m if and only if for any uvw ∈ S3 with
uv, vw ∈ S, we have

π(u) ⋆ (π(v) ⋆ π(w)) = (π(u) ⋆ π(v)) ⋆ π(w) . (2.8)

This theorem shows that to check whether φ̃ is a Maurer–Cartan element, it suffices to check
whether ⋆ = ⋆φ+φ̃ is associative on elements in S3. Moreover, when φ̃ is a Maurer–Cartan element
of p(Q,R)⊗̂m, then ⋆ gives an explicit formula for the corresponding formal deformation of A. It
follows from [BW20, Corollary 7.31] that up to gauge equivalence, any formal deformation of A
over (B,m) is of the form (A ⊗̂B, ⋆) for some Maurer–Cartan element φ̃.

Remark 2.9. For B = k[t]/
(
t2
)
, Theorem 2.7 provides a combinatorial way to compute HH2(A).

Let φ̃ ∈ Hom(kS,A). Then φ̃ is a 2-cocycle if and only if for any uvw ∈ S3 with uv, vw ∈ S, we
have

(π(u) ⋆ π(v)) ⋆ π(w) = π(u) ⋆ (π(v) ⋆ π(w)) mod t2 ,

where ⋆ = ⋆φ+φ̃t. See [BW20, § 7.A] for more details.

2.2.4 Algebraization and actual deformations. Let Â = (AJtK, ⋆) be a formal one-parame-
ter deformation of an associative algebra A. An algebraization of Â is a C-algebra Ã = (A⊗C, ⋆′),
where C is the coordinate ring of an affine curve, together with a smooth closed point of SpecC
corresponding to a maximal ideal m of C such that Â is isomorphic to the (A⊗m)-adic completion
of Ã as a formal deformation.

When A is infinite-dimensional over k, an algebraization does not always exist. However,
when it does, one can consider the formal deformation parameter t as an actual parameter. For
example, if there exists an algebraization with C = k[t] the coordinate ring of an affine line,
the formal parameter t can be evaluated to any constant λ ∈ k, giving an “actual” deformation
Ãλ = Ã/(t− λ) having the same k-basis as A, but usually different geometric or representation-
theoretic properties.

In [BW20, § 9] we use the notion of admissible orders on the set of paths for the quiver Q
to give criteria for the existence of algebraizations of formal deformations. More precisely, let
A = kQ/I, and let R = {(s, φs) | s ∈ S} be a reduction system satisfying (⋄) for I obtained from
a noncommutative Gröbner basis with respect to some admissible order ≺ on Q•.

Now consider the subspace Hom(kS,A)≺ ⊂ Hom(kS,A) consisting of elements φ̃ which satisfy
the following degree condition:

φ̃(s) ∈ kQ≺s for any s ∈ S , (≺)

where kQ≺s is the k-linear span of all paths which are “smaller” than s with respect to the
order ≺. Here we use the identification Hom(kS,A) ≃ Hom(kS,kIrrS) and thus view φ̃(s) ∈
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kIrrS ∩ kQ≺s in (≺). Note that we have φ ∈ Hom(kS,A)≺ since by definition φ(s) = φs ≺ s for
any s ∈ S.

Proposition 2.10 ([BW20, Proposition 9.17]). Let φ̃ ∈ Hom(kS,A)≺ ⊗ (t).

(i) For any a, b ∈ A, we have that a ⋆φ+φ̃ b is a finite sum.

(ii) If φ̃ satisfies the Maurer–Cartan equation of p(Q,R) ⊗̂ (t), then the formal deformation
(AJtK, ⋆φ+φ̃) admits (A[t], ⋆φ+φ̃) as an algebraization.

In particular, in [BW20] it was shown that when R is a finite reduction system, the set V≺ of
Maurer–Cartan elements in Hom(kS,A)≺ of p(Q,R) admits the structure of an affine algebraic
variety of algebras previously studied by E. Green, L. Hille and S. Schroll [GHS21]. This variety
has the following properties.

Theorem 2.11 ([BW20, Theorem 2.10]). Let dimHom(kS,A)≺ = N < ∞.

(i) There is a natural groupoid action G≺ V≺ corresponding to equivalence of reduction
systems, such that two Maurer–Cartan elements in V≺ are equivalent if and only if they lie
in the same orbit of G≺ V≺.

(ii) The Zariski tangent space of V≺ at the point φ̃ ∈ V≺ is isomorphic to the space of 2-co-
cycles in Hom(kS,Aφ+φ̃)≺. In particular, we have a Kodaira–Spencer map KS: Tφ̃V≺
HH2(Aφ+φ̃, Aφ+φ̃).

(iii) The Zariski tangent space to the orbit of the groupoid G≺ V≺ at φ̃ is contained in the
subspace of the 2-coboundaries lying in Hom(kS,Aφ+φ̃)≺.

2.3 Hypersurfaces

Affine hypersurfaces, that is, varieties whose coordinate ring is of the form A = k[x1, . . . , xd]/(f)
with deg f = n ⩾ 2, are an interesting class of algebraic varieties. A projective A-bimodule
resolution of affine hypersurfaces was given by the Buenos Aires Cyclic Homology Group (BACH)
in [GGRV92]. In the following, we show that this resolution can be viewed as a special case of
the Bardzell–Chouhy–Solotar resolution P• in (2.5).

Let Q be the quiver with one vertex and d loops x1, . . . , xd. Write A = kQ/I, where the
ideal I is generated by the set

{f} ∪ {xjxi − xixj}1⩽i<j⩽d .

After a linear change of coordinates, we may assume that f has leading term xnd with respect to
the lexicographic ordering x1 ≺ x2 ≺ · · · ≺ xd. We may thus write

f = xnd +
∑

0⩽i1,...,id⩽n
i1+···+id⩽n

λi1,...,idx
i1
1 x

i2
2 · · ·xidd

with λi1,...,id ∈ k and λ0,...,0,n = 0. Then we have a reduction system

R =
{(

xnd ,−
∑

λi1,...,idx
i1
1 x

i2
2 · · ·xidd

)}
∪
{
(xjxi, xixj)

}
1⩽i<j⩽d

,

which satisfies the condition (⋄) for I. We have S = {xnd} ∪ {xi2xi1}1⩽i1<i2⩽d.

Set S0 = Q0 = {•} and S1 = Q1 = {xi}1⩽i⩽d. For m ⩾ 0, the set of m-ambiguities is

Sm+2 = {xnjd xik · · ·xi2xi1 | j, k ⩾ 0, 1 ⩽ i1 < · · · < ik ⩽ d and 2j + k = m+ 2} .

In particular, we have S2 = S, and (2.5) gives an explicit resolution P• of A.
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Proposition 2.12. The resolution P• is isomorphic to the BACH resolution C•.

Proof. Let ei1 · · · eikt(j) be a basis element of the BACH resolution (see [GGRV92, § 2.3]). The
map P• C• given by

xjnd xikxik−1
· · ·xi1 ei1 · · · eikt

(j)

is an isomorphism of complexes.

Remark 2.13. Under the above identification, by Theorem 2.6 we obtain an L∞ algebra structure
on the BACH complex C•+1 = HomAe(C•+1, A).

The underlying complex of the L∞ algebra p(Q,R) is Hom(kS•+1, A). Note that we have the
following natural identification:

Hom(kSi+1, A) ≃
⊕

y∈Si+1

Aey ,

where ey denotes the dual basis of y ∈ Si+1. Under this identification, the differential of p(Q,R)
is given by

∂
(
ae

xnj
d xik

···xi2
xi1

)
=

k∑
l=1

(−1)l−1a
∂f

∂xil
e
x
n(j+1)
d xik

···x̂il
···xi1

,

where a ∈ A. In particular, we have ∂(ae
xnj
d
) = 0. Thus we have the following result (see

also [GGRV92, Theorem 3.2.7]).

Lemma 2.14. We have HH2(A) ≃ A/
( ∂f
∂x1

, . . . , ∂f
∂xd

)
⊕ N , where

N =

{ ∑
1⩽i<j⩽d

ajiexjxi

∣∣∣ d∑
i=1

(aki − aik)
∂f

∂xi
= 0 for each 1 ⩽ k ⩽ d

}
.

Here we set aji = 0 if j ⩽ i.

Note that the first summand is isomorphic to the Harrison cohomology Har2(A), which cor-
responds to commutative deformations of A. If A is regular, then Har2(A) = 0 and the second
summand is the space of bivector fields on SpecA.

2.3.1 Singular hypersurfaces. We now give a first affine example by using the deformation–
obstruction calculus for the L∞ algebra p(Q,R).

Example 2.15. Consider f = xn3−x1x2 ∈ k[x1, x2, x3] for n ⩾ 2. LetA = kQ/I = k[x1, x2, x3]/(f).
We have a reduction system satisfying the condition (⋄) for I:

R =
{(

xn3 , x1x2
)}

∪ {(x2x1, x1x2), (x3x1, x1x3), (x3x2, x2x3)}
with S =

{
xn3 , x2x1, x3x1, x3x2

}
and S3 =

{
xn3x1, x

n
3x2, x

n+1
3 , x3x2x1

}
.

Consider the element φ̃ ∈ Hom(kS,A)⊗ (t) given by

φ̃
(
xn3

)
= 0 , φ̃(x3x1) = x1t ,

φ̃(x2x1) = (x3 + t)n − xn3 , φ̃(x3x2) = −x2t .

Write ⋆ = ⋆φ+φ̃, where φ ∈ Hom(kS,A) is the element corresponding to R (see Remark 2.2).
Let us verify (2.8) for the elements in S3. Using the graphical description of ⋆ in [BW20, § 10],

9
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we have

xn−1
3 ⋆ (x3 ⋆ x1) =

(
xn−1
3 ⋆ x3

)
⋆ x1

since both sides equal

x21x2 +
n∑

i=1

(
n

i

)
x1x

n−i
3 ti .

Similarly, we may verify (2.8) for the other elements xn3x2, x
n+1
3 , x3x2x1 in S3. It follows from

Theorem 2.7 that (AJtK, ⋆) is a formal deformation of A. We also note that (AJtK, ⋆) is a defor-
mation quantization of the (exact) Poisson bracket on A determined by

[x3, x1] = − ∂f

∂x2
, [x3, x2] =

∂f

∂x1
, [x2, x1] =

∂f

∂x3
.

Remark 2.16. Let n = 2. Evaluating the deformation (AJtK, ⋆) at t = 1, we obtain that (A, ⋆) is
isomorphic to Ã = U(sl2)/

(
C+ 1

2

)
, where C = XY +Y X+ 1

2H
2 is the Casimir element of U(sl2).

(This can be seen by constructing an algebra isomorphism which sends X to −x1, Y to x2 and H
to 2x3 + 1.)

The category Mod
(
Ã
)
is thus an actual deformation of Mod(A) ≃ Qcoh(SpecA) (cf. (1.1)),

so that Mod
(
Ã
)
can be viewed as the category of quasi-coherent sheaves on a “singular quantum

hypersurface”.

By Proposition 4.20(ii) the above deformation can be obtained from the deformed preprojec-
tive algebra of type Ã1. Similarly, for general n ⩾ 2, we may recover the deformation (AJtK, ⋆)
from the deformed preprojective algebra of type Ãn−1 studied in [CH98].

3. Deformations of categories of coherent sheaves

In this section we show how deformations of the Abelian category Qcoh(X) can be described
as deformations of a path algebra of a suitable quiver with relations. In this context there are
two main sources of such quivers with relations: one is defined from any affine open cover U
of X, and the other is defined from a tilting bundle on X, if available. The former works in
greater generality, but when X admits a tilting bundle, the latter can be computationally more
convenient.

LetX be a separated Noetherian scheme over an algebraically closed field k of characteristic 0,
so that X admits a finite affine open cover U which is closed under intersections.

The restriction OX |U of the structure sheaf to the cover U can be viewed as a diagram of alge-
bras (see Definition 3.5) which is a contravariant functor (a presheaf) OX |U : U Algk, where U
can be viewed as a finite subcategory of the category Open(X) of open sets with morphisms
given by inclusion. Deformations of diagrams of algebras were first studied by Gerstenhaber–
Schack [GS88], and higher structures on the Gerstenhaber–Schack complex were given in Dinh
Van–Lowen [DL18] and also in Dinh Van–Hermans–Lowen [DHL22] using operads. (See also
[BF20] for a construction via higher derived brackets.)

The following result establishes an equivalence of different deformation problems.

Theorem 3.1 (Lowen–Van den Bergh [LVdB05, LVdB06]). Let (X,OX) be a quasi-compact and
separated scheme over an algebraically closed field k of characteristic 0.

There is an equivalence of formal deformations between deformations of

(i) OX |U as a twisted presheaf

10
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(ii) OX |U! as an associative algebra

(iii) Qcoh(X) as an Abelian category

(iv) Mod(OX) as an Abelian category.

Moreover, if X is Noetherian, then the above deformations are also equivalent to deformations
of

(v) coh(X) as an Abelian category.

In the remainder of the paper we phrase all statements for deformations of Qcoh(X), but
since we work with Noetherian schemes, Theorem 3.1 shows that analogous statements hold for
Mod(OX) and coh(X).

The different types of deformations in Theorem 3.1 are parametrized by what are essentially
various versions of Hochschild cohomology with first-order deformations parametrized by

HH2(X) ≃ H2
GS(OX |U) ≃ HH2(OX |U!) ≃ H2

Ab(Qcoh(X)) (3.2)

and obstructions in HH3(X) ≃ · · · ≃ H3
Ab(Qcoh(X)). Here HH•(A) = Ext•Ae(A,A) is the usual

Hochschild cohomology for associative algebras, and the Hochschild cohomology of a scheme may
be defined analogously as

HH•(X) := Ext•OX×X
(δ∗OX , δ∗OX) , (3.3)

where δ∗OX is the pushforward of the structure sheaf along the diagonal map δ : X X ×X
[GS88, Kon03, Swa96]. Also, H•

GS is a cohomology theory for diagrams (or prestacks) of algebras
(see [DL18, GS88]) and H•

Ab a cohomology theory for Abelian categories (see [LVdB05, LVdB06]).

3.0.1 Geometry. Theorem 3.1 shows that the deformation theory of the Abelian category
Qcoh(X) admits several equivalent algebraic descriptions – namely deformations of OX |U as
a twisted presheaf, or deformations of the diagram algebra OX |U! as an associative algebra.

The isomorphisms (3.2) showed that the cohomology groups parametrizing these deformations
are isomorphic to the Hochschild cohomology HH2(X) of the scheme, furnishing the following
geometric interpretation.

If X is smooth, then the Hochschild–Kostant–Rosenberg theorem (see [Yek02]) gives a de-
composition

HHn(X) ≃
⊕

p+q=n

Hp
(
ΛqTX

)
, (3.4)

where ΛqTX is the sheaf of sections in the qth exterior power of the tangent bundle. A similar
geometric interpretation can be given for singular X for which a decomposition of HH•(X) was
given in [BF08a, BF08b].

First-order deformations of Qcoh(X) are thus parametrized by

HH2(X) ≃ H0
(
Λ2TX

)
⊕H1(TX)⊕H2(OX) ,

where

(i) H0
(
Λ2TX

)
is the space of bivector fields, which for Poisson bivector fields parametrize

a (noncommutative) algebraic quantization of OX ;

(ii) H1(TX) is well known to parametrize algebraic deformations of X as a scheme (which over
k = C corresponds to classical deformations of the complex structure);

11
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(iii) H2(OX) parametrizes “twists”, that is, deformations of the (trivial) O∗
X -gerbe structure

of OX .

Hence deformations of Qcoh(X) can be thought of as a combination of these three types of
deformations.

Note that if X is a curve, then HH2(X) ≃ H1(TX) and HH3(X) = 0 so that all deformations
of Qcoh(X) are induced by classical deformations of the curve (cf. Example 3.14).

3.1 Deformations via the diagram algebra

First we shall consider assertion (ii) of Theorem 3.1, which concerns deformations of the so-called
diagram algebra OX |U! which is defined as follows.

Definition 3.5. A diagram of k-algebras over a small category U is a contravariant functor
A : U Algk to the category of associative k-algebras.

The diagram algebra of A, denoted by A!, is given as a k-module by

A! =
∏
U∈U

⊕
f : U V

A(U)xf ,

where the sum is over all morphisms in U and xf is simply a formal (bookkeeping) symbol. The
multiplication of elements a ∈ A(U) and b ∈ A(V ) is defined by

(axf )(bxg) =

{
aA(f)(b)xg◦f if g ◦ f is defined,

0 otherwise,

where aA(f)(b) is the product of a and A(f)(b) in the algebra A(U)

U V W

A(U) A(V ) A(W ) .

f g

A(f) A(g)

Definition 3.6. Let A be a diagram of algebras. An A-module M is a contravariant functor
M : U Veck to the category of k-vector spaces such that M(U) is an A(U)-module for
each U ∈ U and M(f) : M(V ) M(U) is a morphism of A(V )-modules for each morphism
f : U V .

An A-module M is quasi-coherent if the induced map A(U) ⊗A(V ) M(V ) M(U) is
an isomorphism for any f : U V (see Enochs–Estrada [EE05, § 2]). We denote by Mod(A)
the Abelian category of all A-modules and by Qcoh(A) the full subcategory of quasi-coherent
modules.

This definition of modules over a diagram of algebras is compatible with the usual notion of
modules in that we have an equivalence of Abelian categories Mod(A) ≃ Mod(A!). We denote
by Qcoh(A!) the full subcategory of the images of Qcoh(A). It follows from [EE05, § 2] that for
any separated Noetherian scheme X and any finite affine open cover U which is closed under
intersections, we have

Qcoh(X) ≃ Qcoh(OX |U) ≃ Qcoh(OX |U!) .
Theorem 3.1 states that studying deformations of Qcoh(X) as an Abelian category is equiv-

alent to studying deformations of the diagram algebra OX |U!. The construction summarized in
the following proposition can be used to study deformations of Qcoh(X) for X any separated
Noetherian scheme via the approach outlined in § 2 for deformations of kQ/I.

12
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Proposition 3.7. Let X be any separated Noetherian scheme, and let U be any finite affine
open cover of X which is closed under intersections.

The diagram algebra OX |U! is isomorphic to the path algebra of a finite quiver Qdiag on #U
vertices modulo a finitely generated ideal J of relations. Moreover, there exists a finite reduction
system Rdiag satisfying (⋄) for J .

Proof. We give a general constructive proof, but for concrete examples see Example 3.14 and
§ 4.1.

Let U1, . . . , Un be an affine open cover of X, and let U = {Ui1···im | 1 ⩽ i1 < · · · < im
⩽ n}1⩽m⩽n, where

Ui1···im = Ui1 ∩ · · · ∩ Uim ;

that is, U is the closure of {U1, . . . , Un} under taking intersections.

The diagram OX |U can be viewed as the 1-skeleton of an n-hypercube with one vertex (cor-
responding to X) and the incident edges removed. The cover U has cardinality 2n − 1, and the
diagram algebra OX |U! can then be written as the path algebra kQdiag/J of a quiver Qdiag with
relations J as follows.

LetQdiag be the quiver on 2n−1 vertices, each vertex corresponding to an open set Ui1···im ∈ U,
and let each vertex be labelled by i1 · · · im, say. To simplify the indexing, let us write i for some
label i1 · · · im, and if m < n and j ∈ {1, . . . , n}\{i1, . . . , im}, we write ij for the label i1 · · · j · · · im
obtained by adding j to i. We will now add several sets of arrows to the quiver.

If i = i1 · · · im, there are n − m inclusions Uij ⊂ Ui, so for each such inclusion, we add an
arrow

ij
f i
j

i

in the opposite direction since OX |U is contravariant. For example, for n = 1, 2, 3, this gives the
following acyclic quivers:

01
0

1
012

01

02

12

0

1

2

0123

012

013

023

123

01

02

03

12

13

23

0

1

2

3

(3.8)

For each square

i

ij

ik

ijk

f i
j

f i
k

f ij
k

f ik
j

(3.9)

we add the relation

f i
kf

ik
j − f i

jf
ij
k (3.10)

since the diagram OX |U is commutative. Let J2 denote the ideal generated by the relations (3.10)
for all squares of the form (3.9). Let

R2 =
⋃

1⩽|i|⩽n−2

{(
f i
kf

ik
j , f i

jf
ij
k

)}
j<k

,

13
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where the length |i| of the label is assumed to be at most n−2 so that adding two distinct indices
is possible. Then R2 is a reduction system which satisfies (⋄) for the ideal J2 since reductions
correspond to reordering the lower indices to be strictly increasing. (Any overlap for R2 is of the

form f i
l f

il
k f

ikl
j for some j < k < l, which uniquely resolves to f i

jf
ij
k f ijk

l .)

Now at each vertex i, we have a finitely generated commutative algebra

OX(Ui) ≃ k
[
xi1, . . . , x

i
Ni

]
/
(
F i
1, . . . , F

i
Mi

)
.

This algebra can be written as the path algebra of a quiver of a single vertex with Ni loops
xi1, . . . , x

i
Ni

modulo the ideal J i generated by commutativity relations xijx
i
i = xiix

i
j and the

relations F i
1, . . . , F

i
Mi

. For each vertex i, fix any finite reduction system Ri satisfying (⋄) for J i.
(Note that such a finite reduction system exists by Remark 2.3 and can be explicitly computed
from a commutative Gröbner basis.) At each vertex i we thus add Ni loops to the quiver Qdiag

and set

R0 =
⋃

1⩽|i|⩽n

Ri .

We need to add one last set of relations involving the loops at two vertices which are connected
by an arrow of the underlying acyclic quiver. For each f i

j , we have

ij i
f i
j

......

xij
1 ,..., xij

Nij
xi
1,..., x

i
Ni

Now add relations xirf
i
j−f i

jX
i,j
r , where X i,j

r is the image of the generator xir of OX(Ui) under the
restriction map OX(Ui) OX(Uij), expressed in terms of a linear combination of irreducible

paths (with respect to Ri,j) in the generators xij1 , . . . , x
ij
Nij

.

These relations are encoded into a reduction system by setting

Ri,j =
{(

xirf
i
j , f

i
jX

i,j
r

)}
1⩽r⩽Ni

,

R1 =
⋃

1⩽|i|⩽n−1

Ri,j .

Finally, we define Rdiag = R0∪R1∪R2 and let J = (s−φs)(s,φs)∈Rdiag as usual. By construction

we have that kQdiag/J ≃ OX |U!.
Clearly Rdiag is finite, so it only remains to show that Rdiag is reduction-unique, so that Rdiag

satisfies (⋄) for J . Since R1 has no overlaps and the overlaps in R0 and R2 resolve, we only
need to show that overlaps in Rdiag arising from combinations in R0, R1, R2 also resolve. These
additional overlaps are of the form

(i) sif i
j for any

(
si, φsi

)
∈ Ri

(ii) xirf
i
kf

ik
j for j < k and any 1 ⩽ r ⩽ Ni.

Note that at each vertex i, reductions (with respect to Rdiag or equivalently Ri) induce the
identity map on the quotient algebra k

〈
xi1, . . . , x

i
Ni

〉
/J i ≃ OX(Ui) and the arrows f i

j correspond

to the algebra homomorphisms OX(Ui) OX(Uij). The overlap sif i
j thus uniquely resolves

to f i
jY , where Y is the unique linear combination of irreducible paths (with respect to Rij) such

that [Y ] ∈ k
〈
xij1 , . . . , x

ij
Nij

〉
/J ij ≃ OX(Uij) equals the image of

[
si
]
= [φsi ] ∈ OX(Ui) under

14



Deformations of categories of coherent sheaves

OX(Ui) OX(Uij). Similarly, xirf
i
kf

ik
j uniquely resolves to f i

jf
ij
k Z, where Z is the unique linear

combination of irreducible paths (with respect to Rijk) such that [Z] is the image of xir under
OX(Ui) OX(Uijk).

Theorem 3.11. Let X be any separated Noetherian scheme, and let Qdiag and Rdiag be as in
Proposition 3.7. Then the L∞ algebra p

(
Qdiag, Rdiag

)
controls the deformation theory of Qcoh(X)

as an Abelian category.

Proof. It follows from Theorem 2.6 and Proposition 3.7 that p
(
Qdiag, Rdiag

)
controls the defor-

mation theory of the diagram algebra OX |U! ≃ kQdiag/J . The result then follows from Theo-
rem 3.1.

Remark 3.12. Dinh Van–Lowen [DL18] defined an L∞ algebra structure gs(OX |U) on the Ger-
stenhaber–Schack complex by homotopy transfer from the DG Lie algebra h(OX |U!) (cf. § 2.1).
We thus have a zigzag of L∞ quasi-isomorphisms

p
(
Qdiag, Rdiag

)
h(OX |U!) gs(OX |U)

(cf. Remark 3.19) so that both p
(
Qdiag, Rdiag

)
and gs(OX |U) control the deformation theory

of OX |U! (and thus the deformation theory of Qcoh(X)).

Note, however, that p
(
Qdiag, Rdiag

)
is practically always much smaller than gs(OX |U). For

instance, if X = Ad, we may take U = {X} whence OX |U! ≃ OX(X) ≃ k[x1, . . . , xd]. The cochain
complex underlying p

(
Qdiag, Rdiag

)
has trivial differential and is therefore already isomorphic to

HH•(X) ≃ H0(Λ•TAd) (see [BW20, Lemma 10.21]), whereas the Gerstenhaber–Schack complex
is the full Hochschild cochain complex for k[x1, . . . , xd]. In this case deformations of Qcoh

(
Ad

)
correspond to deformation quantizations of algebraic Poisson structures on Ad, which is a diffi-
cult problem [Kon03], and a formal solution does not necessarily give a handle on the problem
of finding algebraizations. Working with p

(
Qdiag, Rdiag

)
one can obtain explicit quantizations

[BW20, § 10] which can be used to obtain (nonformal) strict deformation quantizations of alge-
braic Poisson structures [BS23].

Now, if X is a projective hypersurface, the cochain complex underlying p
(
Qdiag, Rdiag

)
coin-

cides with the BACH complex (see § 2.3) at each vertex of the diagram instead of the Hochschild
cochain complex. The BACH complex was also used by L. Liu and W. Lowen [LL19] to study
the Hochschild cohomology of projective hypersurfaces X which can be viewed as first-order
deformations of Qcoh(X) up to equivalence. The L∞ algebra p(Qdiag, Rdiag) thus gives the nat-
ural higher structure to use the BACH complex to study the full formal deformation theory of
Qcoh(X) and moreover gives a route to study algebraizations.

3.1.1 Algebraization. Using the same idea as in Proposition 2.10, we can use the admissible
order on the algebra OX(U) at each vertex of Qdiag to give a sufficient criterion for the existence
of an algebraization of a formal deformation of the diagram algebra OX |U!.

Recall that Rdiag = R0 ∪R1 ∪R2 is obtained by gluing the commutative Gröbner basis with
respect to some admissible order ≺ at each vertex. Let S0 = {s}(s,φs)∈R0

. Then we have the
following result.

Proposition 3.13. Let φ̃ ∈ Hom
(
kS, kQdiag/J

)
⊗ (t) be a Maurer–Cartan element of the L∞

algebra p
(
Qdiag, Rdiag

)
⊗̂ (t) such that φ̃(s) ≺ s for each s ∈ S0. Then (OX |U!JtK, ⋆φ+φ̃) admits

(OX |U![t], ⋆φ+φ̃) as an algebraization.
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Proof. This follows from the same idea as Proposition 2.10, namely if φ̃(s) is polynomial in t for
each s ∈ S and φ̃ satisfies the degree condition φ̃(s) ≺ s for all s ∈ S0, then ⋆φ+φ̃ is a finite sum
and is thus already well defined on OX |U![t].

This can be generalized to any complete local Noetherian k-algebra (B,m).

3.1.2 An example in dimension 1. In the following example we show how to calculate the
family of deformations of a (smooth) genus 3 curve using the deformation theory of OX |U! ≃
kQdiag/J for Qdiag and J as in Proposition 3.7. Of course the deformation theory of smooth
projective curves is one of the best understood examples, but we provide the example as a point
of reference to illustrate which shape the deformation theory of Qcoh(X) takes when computed
as deformations of OX |U! ≃ kQdiag/J . (Note that curves of genus at least 1 do not admit tilting
bundles, and so the usually more economical approach via tilting bundles studied in § 3.2 does
not apply here.)

Example 3.14 (Deformations of a genus 3 curve). Consider the smooth genus 3 curve X ⊂ P2 =
{[x0, x1, x2]} cut out by the quartic equation

F = x30x1 + x31x2 + x42 = 0 .

Note that the point [0, 0, 1] does not lie in X, so that X ⊂ P2 \ {[0, 0, 1]} = U0 ∪ U1, where

U0 = {[x0, x1, x2] | x0 ̸= 0} = {[1, z, u]} ≃ k2 ,
U1 = {[x0, x1, x2] | x1 ̸= 0} = {[ζ, 1, v]} ≃ k2 .

Let U , V denote the restrictions of U0, U1 to X. Setting U = {U, V, U ∩ V } we can follow the
proof of Proposition 3.7 and write the diagram algebra OX |U! as the path algebra of the quiver

z

u

x y

w

ζ

v

f g

U U ∩ V V

with ideal of relations J generated by s − φs for (s, φs) ∈ Rdiag, where Rdiag is the reduction
system consisting of the following pairs:

– (uz, zu), (vζ, ζv), (wx, xw), (wy, yw) commutativity of charts

– (zf, fx), (uf, fw), (ζg, gy), (vg, gyw) compatibility with morphisms

– (xy, 1), (yx, 1) mutually inverse coordinates

–
(
u4,−z3u− z

)
,
(
w4,−x3w − x

)
,
(
v4,−ζ3 − v

)
equation of curve

which can be obtained from the admissible orders extending z ≺ u, ζ ≺ v and x ≺ y ≺ w at the
vertices Qdiag corresponding to the open sets U , V , U ∩ V , respectively. Note that we have

S =
{
uz, vζ, wx,wy, xy, yx, zf, uf, ζg, vg, u4, v4, w4

}
.

To show that Rdiag satisfies (⋄) for J , it suffices to show that the overlaps uzf , u4f , vζg, v4g,
xyx, yxy, wxy, wyx, w4x, w4y, u4z, v4ζ in S3 are resolvable. For each overlap this is a short and
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straightforward computation, for example

uzf

zuf ufx

zfw fwx

fxw

w4y

yw4 −x3wy − xy

−yx3w − yx −x3yw − 1

−x2w − 1

wxy

xwy

xyw

w.

Now let φ̃ ∈ Hom
(
kS,kQdiag/J

)
be any 2-cochain, and as usual we write φ̃s = φ̃(s) ∈ kIrrS .

Let FU , FV and FW denote the restrictions of F to the charts U0, U1 and U01 = U0 ∩ U1 of P2,
that is,

FU = u4 + z3u+ z , FV = v4 + ζ3 + v and FW = w4 + x3w + x .

In order for φ̃ to satisfy the Maurer–Cartan equation, we need only check that (2.8) holds
for the elements in S3, giving the conditions

φ̃wx = φ̃wy = φ̃uz = φ̃vζ = 0 and φ̃xy = φ̃yx (3.15)

as well as

φ̃v4g = gy4φ̃w4 +
∂FV

∂ζ
φ̃ζg +

∂FV

∂v
φ̃vg − g

∂FW

∂x
y3φ̃yx ,

φ̃u4f = fφ̃w4 +
∂FU

∂u
φ̃uf +

∂FU

∂z
φ̃zf .

(3.16)

Here (3.15) signifies that the commutativity relations of the charts should not be changed,
and (3.16) imposes compatibility conditions between changing the morphisms and changing the
equation of X in the individual charts.

We may first deform the individual algebra k[ζ, v]/(FV ) in the chart V by setting

φ̃v4 = λ1 + λ2ζ + λ3v + λ4ζv + λ5v
2 + λ6ζv

2

since we have

k[ζ, v]
/(

∂FV

∂ζ
,
∂FV

∂v

)
= k[ζ, v]/

(
4v3 + 1, 3ζ2

)
.

Then setting φ̃zf = φ̃uf = φ̃ζg = φ̃vg = φ̃yx = φ̃xy = 0 and solving (3.16) gives

φ̃w4 = λ1x
4 + λ2x

3 + λ3x
3w + λ4x

3w + λ5x
2w2 + λ6xw

2 ,

φ̃u4 = λ1z
4 + λ2z

3 + λ3z
3u + λ4z

3u + λ5z
2u2 + λ6zu

2 .

(Note that φ̃ satisfies φ̃(s) ≺ s for all s ∈ S0, so we may view λ1, . . . , λ6 directly as “actual”
rather than formal parameters; cf. Proposition 3.13.)

Note that for a genus g curve C, one has HH2(C) ≃ H1(TC) ≃ k3g−3. Here X is a genus 3
curve, and indeed we obtain a 6-dimensional family of nontrivial “actual” deformations of X
parametrized by λ = (λ1, . . . , λ6) ∈ k6 with fibres Xλ = {Fλ = 0} ⊂ P2, where

Fλ = x30x1 + x42 + λ1x
4
1 + λ2x0x

3
1 + (1 + λ3)x

3
1x2 + λ4x0x

2
1x2 + λ5x

2
1x

2
2 + λ6x0x1x

2
2 .

This example shows that the deformation theory of Qcoh(X) can be studied rather explicitly.
(See § 4.1 for the caseX = TotOP1(−k).) Indeed, each element (s, φs) in the reduction system has
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a clear geometric meaning: it corresponds to a commutativity relation of the local coordinates, to
the identification of coordinates across charts, to the defining equations or to the commutativity
of the coordinate changes across charts. That is, the geometric meaning of the modifications to
the reduction system is very much transparent.

Note that, in general, a deformation of OX |U may be a not necessarily commutative diagram
of not necessarily commutative associative algebras, so it is natural to look at deformations
of OX |U! in this general context of path algebras of quivers with relations.

3.2 Deformations via tilting bundles

By Theorem 3.1 deformations of the Abelian category Qcoh(X) admit a description as deforma-
tions of the diagram algebra OX |U! which by Proposition 3.7 can be written as kQdiag/J .

In case the variety or scheme admits a tilting bundle (for instance, projective spaces [Bei78],
Grassmannians, quadrics[Kap84, Kap88], rational surfaces[HP11], hypertoric varieties[ŠVdB21])
– for example the tilting bundle obtained from a strong full exceptional collection – there is a much
more economical description of this deformation theory by means of a smaller quiver: we have

End E ≃ kQtilt/I

for some finite quiver Qtilt and some ideal of relations I. Here Qtilt is constructed by putting
a vertex for each direct summand of E and adding arrows to generate the morphism spaces
between the direct summands.

The tilting bundle E induces a derived equivalence between the Abelian category of quasi-
coherent sheaves on X and the Abelian category of right modules for the endomorphism algebra
kQtilt/I ≃ End E ,

D(Mod(End E)) ≃ D(Qcoh(X)) , (3.17)

given by the functors RHom(E ,−) and −⊗L E , and (3.17) induces an isomorphism of Hochschild
cohomologies

HH•(End E) ≃ HH•(X) .

(See for example [Bae88, Bon90, BH13, HVdB07].)

Theorem 3.18. Let X be a separated Noetherian scheme, and let E be a tilting bundle on X.
Write End E = kQtilt/I, and let Rtilt be any reduction system satisfying (⋄) for I. Then
p
(
Qtilt, Rtilt

)
controls the deformation theory of the Abelian category Qcoh(X).

Proof. It follows from Hille–Van den Bergh [HVdB07, Theorem 7.6] that the derived tensor
functor − ⊗L E induces an equivalence between D(Mod(End E)) and D(Qcoh(X)). Then by
Lowen–Van den Bergh [LVdB05, Theorem 6.1] there is a B∞ quasi-isomorphism between
C•(End E ,End E) and C•

Ab(Qcoh(X)) which in particular gives an L∞ quasi-isomorphism be-
tween h(End E) and lv(Qcoh(X)), where the latter denotes the DG Lie algebra structure on
C•+1
Ab (Qcoh(X)) controlling the deformation theory of Qcoh(X) introduced in [LVdB05]. It now

follows from the L∞ quasi-isomorphism in Theorem 2.6 that p
(
Qtilt, Rtilt

)
controls the deforma-

tion theory of Qcoh(X).
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Remark 3.19. Collecting the various DG Lie and L∞ algebras which all control the deformation
theory of Qcoh(X) in some way, we have the following natural zigzags of L∞ quasi-isomorphisms:

gs(OX |U) lv(Qcoh(X))

p
(
Qdiag, Rdiag

)
h(OX |U!) lv(Mod(OX |U!))

p
(
Qtilt, Rtilt

)
h(End E) lv(Mod(End E)) ,

(3.20)

where the two left horizontal arrows are given in Theorem 2.6, the middle vertical arrow was
constructed by Dinh Van–Lowen [DL18] (cf. Remark 3.12) and the other arrows follow from
Lowen–Van den Bergh [LVdB05].

The advantage of the two L∞ algebras p(Q∗, R∗) for ∗ ∈ {diag, tilt} on the left-hand side is
that their underlying complexes are usually much smaller. These L∞ algebras control the full
deformation theory of Qcoh(X), but at the same time the deformations are often possible to
construct explicitly (even by hand) by using the combinatorial criterion for the Maurer–Cartan
equation given in Theorem 2.7.

To complete the picture, we note that the derived equivalence (3.17) obtained by tilting can
be extended to any formal deformation.

Proposition 3.21. Let X be any separated Noetherian scheme, let U be an affine open cover
of X closed under intersections, and let E be a tilting bundle on X. Then the derived equivalence
D(Qcoh(X)) ≃ D(Mod(End E)) lifts to any formal deformation.

More precisely, let (B,m) be any complete local Noetherian k-algebra, let Φ̃ be a Maurer–
Cartan element of p

(
Qdiag, Rdiag

)
⊗̂ m, and let φ̃ be the corresponding Maurer–Cartan element

of p
(
Qtilt, Rtilt

)
⊗̂m. Then we have a triangulated equivalence

D(Qcoh((OX |U! ⊗̂B, ⋆
Φ+Φ̃

))) ≃ D(Mod((End E ⊗̂B, ⋆φ+φ̃))) .

Proof. The tilting bundle E is a compact generator of D(Qcoh(X)), and Blanc–Katzarkov–Pandit
[BKP18, Theorem 4.29] showed more generally that for any k-linear ∞-category D, a compact
generator of D lifts to any formal deformation of D. A proof in the case of purely commutative
deformations can also be found in Karmazyn [Kar18, Theorem 3.4].

4. A quasi-projective example

In this section we give a detailed description of the deformation theory of the Abelian cate-
gory Qcoh(Zk), where Zk = TotOP1(−k) for k ⩾ 2 is the total space of a negative line bundle
on P1 with first Chern class −k. This family of smooth quasi-projective surfaces allows us to illus-
trate the various aspects of the combinatorial approach to deformations of Abelian categories of
(quasi-)coherent sheaves, such as the obstruction calculus for p(Q,R) and the problem of finding
algebraizations. The surfaces Zk are particularly well suited for the following reasons.

Firstly, the surfaces Zk admit tilting bundles, so that we can compare the two different
descriptions of the deformation theory of Qcoh(Zk) given in § 3 via deformations of the diagram
algebra and via deformations of the endomorphism algebra of the tilting bundle. Since Zk is
covered by two copies of A2, both the diagram algebra and the endomorphism algebra of the
tilting bundle can be easily described.
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Secondly, the Hochschild–Kostant–Rosenberg theorem decomposes the second Hochschild
cohomology into two direct summands

HH2(Zk) ≃ H0
(
Λ2TZk

)
⊕H1(TZk

)

corresponding to noncommutative deformations parametrized by algebraic Poisson structures
and commutative deformations, respectively (see Lemma 4.4). Moreover, obstructions lie in

HH3(Zk) ≃ H1
(
Λ2TZk

)
≃ kk−3 ,

which is nontrivial for k ⩾ 4, allowing us to illustrate a nontrivial obstruction calculus of the L∞
algebra p(Q,R) by using the necessary and sufficient condition given in Theorem 2.7.

Thirdly, the surfaces Zk are minimal resolutions of the cyclic surface singularities Xk of type
1
k (1, 1), and any deformation of Qcoh(Zk) induces a deformation of Xk. In § 5 we use the geo-
metric description of the deformation theory of Qcoh(Zk) to produce a family of simultaneously
commutative and noncommutative deformations of Xk.

4.1 Deformations of the diagram algebra

The surface Zk is a smooth toric surface covered by only two affine open sets U =
{
(z, u) ∈ k2

}
and V =

{
(ζ, v) ∈ k2

}
, and for z, ζ ̸= 0, we have (ζ, v) =

(
z−1, zku

)
on U ∩ V ≃ k× × k. (Here z

and ζ are the local coordinates on P1.) We may thus take U = {U, V, U ∩ V } as the affine open
cover closed under intersections and consider the diagram of algebras OZk

|U given by

OZk
(U) OZk

(U ∩ V ) OZk
(V ) ,

which in the above coordinates can be written as

k[z, u] k[x, y, w]/(xy − 1) k[ζ, v]

z x y ζ

u w xkw v .

f g

(4.1)

By Proposition 3.7 we have an algebra isomorphism OZk
|U! ≃ kQdiag/J , where Qdiag is the quiver

z

u

x y

w

ζ

v

f g

U U ∩ V V

and J is the two-sided ideal of relations generated by s − Φs for (s,Φs) ∈ Rdiag, where Rdiag is
the reduction system consisting of the following pairs:

– (uz, zu), (vζ, ζv), (wx, xw), (wy, yw) commutativity of charts

– (zf, fx), (uf, fw), (ζg, gy), (vg, gxkw) compatibility with morphisms

– (xy, 1), (yx, 1) mutually inverse coordinates.

In particular, we have that

S = {uz, vζ, wx,wy, zf, uf, ζg, vg, xy, yx} ,
S3 = {uzf, vζg, wxy,wyx, xyx, yxy} .

(4.2)

We denote by Φ ∈ Hom
(
kS, kQdiag/J

)
the element determining Rdiag (cf. Remark 2.2).
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The reduction system Rdiag can be obtained from the construction in the proof of Proposi-
tion 3.7 by choosing the Gröbner bases on OZk

(U), OZk
(V ), OZk

(U ∩ V ) corresponding to the
admissible orders extending z ≺ u, ζ ≺ v and x ≺ y ≺ w, respectively.

Remark 4.3. The quiver for Zk = TotOP1(−k) is exactly the same as the quiver in Example 3.14.
However, the relations are different: the genus 3 curve of Example 3.14 was written as a hyper-
surface in TotOP1(1) = U0 ∪ U1, where U0, U1 are two of the standard affine coordinate charts
of P2.

From the reduction system Rdiag we obtain a projective resolution P•, see (2.5), of the diagram
algebra OZk

|U!. The following lemma can be calculated geometrically as Čech cohomology with
respect to the cover {U, V }, see [BG19, BG22] and the first-named author’s PhD thesis (Münster,
2018), or algebraically using (3.2) and Remark 2.9.

Lemma 4.4. The cohomology groups relevant to the deformation theory appearing in the Hoch-
schild–Kostant–Rosenberg decomposition of HHi(Zk) are the following:

H0(OZk
) ≃ k

[
u, zu, . . . , zku

]
≃ k[z0, . . . , zk]/(zizj+1 − zi+1zj)0⩽i<j<k

H1(TZk
) ≃ k

〈
z−k+j ∂

∂u

〉
1⩽j⩽k−1

≃ kk−1

H0
(
Λ2TZk

)
≃


H0(OZk

)

〈
∂

∂z
∧ ∂

∂u

〉
if k = 2

H0(OZk
)

〈
zju

∂

∂z
∧ ∂

∂u

〉
0⩽j⩽2

if k ⩾ 3

H1
(
Λ2TZk

)
≃


0 if k = 2, 3

k
〈
z−j ∂

∂z
∧ ∂

∂u

〉
1⩽j⩽k−3

≃ kk−3 if k ⩾ 4 .

Here we express these cohomology groups in terms of the polyvector fields in the chart U ,
which can be naturally identified with cocycles in p

(
Qdiag, Rdiag

)
. For instance, the basis element

z−k+j ∂
∂u of H1(TZk

) corresponds to the 2-cocycle Φ̃ ∈ Hom
(
kS, kQdiag/J

)
defined by

Φ̃(uf) = fyk−j

and Φ̃(s) = 0 for any s ∈ S \ {uf}. Similarly, the generator zju ∂
∂z ∧

∂
∂u of H0(Λ2TZk

) corresponds

to the cocycle Φ̃ ∈ Hom
(
kS, kQdiag/J

)
given by

Φ̃(uz) = zju , Φ̃(vζ) = −ζ2−jv , Φ̃(wx) = xjw , Φ̃(wy) = −y2−jw (4.5)

and Φ̃(s) = 0 for all other s ∈ S.

By Theorems 2.6 and 3.1, the deformation theory of Qcoh(Zk) is controlled by the L∞ algebra
p
(
Qdiag, Rdiag

)
. In the following we will use Theorem 2.7 to construct a family of explicit formal

deformations of Qcoh(Zk) and use § 3.1.1 to find algebraizations where possible.

4.1.1 Commutative deformations. The commutative deformations of the surfaces Zk were
studied in [BG19], where it was shown that the nontrivial deformations corresponding to cocycles
in H1(TZk

) are smooth affine varieties. Here we illustrate how to study these “commutative”
deformations of Qcoh(Zk) via the diagram algebra OZk

|U! ≃ kQdiag/J .
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Consider the element Φ̃ ∈ Hom
(
kS, kQdiag/J

)
⊗̂ (t1, . . . , tk−1) given by

Φ̃(uf) =
k−1∑
j=1

fyjtj

and Φ̃(s) = 0 for all other s ∈ S in (4.2). By Theorem 2.7, Φ̃ is a Maurer–Cartan element
of p

(
Qdiag, Rdiag

)
⊗̂ (t1, . . . , tk−1) since ⋆

Φ+Φ̃
is associative on elements in S3 in (4.2) as can

be easily checked (cf. (4.7) below). This corresponds to a commutative deformation of Zk, and
this deformation is algebraizable (cf. § 3.1.1). Evaluating the algebraization to ti λi for some
λ = (λ1, . . . , λk−1) ∈ kk−1, we obtain the diagram algebra of the commutative deformation of Zk

given by the diagram

k[z, u] k[x, y, w] / (xy − 1) k[ζ, v]

z x y ζ

u w +
k−1∑
j=1

λjfy
j xkw v .

f g

(4.6)

This is a diagram of commutative algebras, and the Abelian category of quasi-coherent modules
for the diagram (4.6) (see Definition 3.6) is equivalent to the category of quasi-coherent sheaves on
the commutative deformation of Zk. (This is an analogue of the usual equivalence Qcoh(SpecA) ≃
Mod(A) in the affine case.)

4.1.2 Noncommutative deformations. The “purely noncommutative” deformations of Zk

corresponding to quantizations of Poisson structures on Zk were studied (over C) in [BG22]
by using Kontsevich’s universal quantization formula on C2. Here we give a different combi-
natorial construction of the quantizations via p

(
Qdiag, Rdiag

)
that also allows us to construct

a “q-deformation” of Zk.

Consider the element Φ̃ ∈ Hom
(
kS, kQdiag/J

)
⊗̂ (t′1, t

′
2) given by

Φ̃(uz) = α(z)u , Φ̃(vζ) = β(ζ)v , Φ̃(wx) = α(x)w , Φ̃(wy) = β(y)w

and Φ̃(s) = 0 for all other s ∈ S in (4.2). Here α(z) = t′1 + zt′2 and β(ζ) =
∑∞

i=1 ζ(−ζt′1 − t′2)
i,

so that (x + α(x))(y + β(y)) = 1. By Theorem 2.7, we may check that Φ̃ is a Maurer–Cartan
element of p

(
Qdiag, Rdiag

)
⊗̂ (t′1, t

′
2).

Concretely, this can be done by checking (2.8) on elements of S3 in (4.2). For example, for
uzf ∈ S3, we have u ⋆ (z ⋆ f) = (u ⋆ z) ⋆ f , as illustrated by the diagram

uzf

ufx zuf + α(z)uf

fwx zfw + α(z)fw

fxw + fα(x)w .

(4.7)

Let us take t′1 = µ0ℏ and t′2 = µ1ℏ, where µ0, µ1 ∈ k and ℏ is another formal parameter.
The corresponding deformation of the diagram algebra OZk

|U! ≃ kQdiag/J gives a deformation
quantization of the Poisson structure (µ0u+µ1zu)

∂
∂z ∧

∂
∂u of Zk, which can be seen by comparing

22



Deformations of categories of coherent sheaves

the first-order term of Φ̃ with the cocycle defined in (4.5). The resulting formal deformation is
the diagram algebra of the diagram of algebras

(k[z, u]JℏK, ⋆) f
(k[x, y, w]JℏK/(xy − 1), ⋆)

g
(k[ζ, v]JℏK, ⋆) . (4.8)

As for the commutative case, the Abelian category of quasi-coherent modules for the diagram
(4.8) can be viewed as the analogue of the Abelian category of quasi-coherent sheaves on some
(formal) “noncommutative deformation” of Zk.

Remark 4.9. In [BW20, § 10] we gave a graphical description of the combinatorial star product ⋆,
similar to Kontsevich’s graphical calculus for his universal quantization formula [Kon03]. In
particular, the star product on the individual algebras in (4.8) can be given by the formula

a ⋆ b =
∑
n⩾0

ℏn
∑

Π∈Gn,2

CΠ(a, b) ,

where Gn,2 is a set of admissible graphs for the combinatorial star product and CΠ is a bidiffer-
ential operator associated with an admissible graph Π. See also [BS23] for further applications
in deformation quantization.

A q-deformation of Zk. From the diagram (4.8) we can also get an “actual” noncommuta-
tive deformation of Qcoh(Zk) corresponding to the quantization of the “log-canonical” Poisson
structure zu ∂

∂z ∧
∂
∂u . Let Aq denote the diagram of algebras

k⟨z, u⟩/(uz − qzu)
f k⟨x, y, w⟩/J g k⟨ζ, v⟩/

(
vζ − q−1ζv

)
, (4.10)

where J =
(
wx−qxw,wy−q−1yw, xy−1, yx−1

)
and q ∈ k\{0} is obtained by evaluating 1+ℏ to

some nonzero constant. Note that q = 1 recovers the diagram OZk
|U. The diagram Aq, see (4.10),

can thus be viewed as a “q-deformation” of OZk
|U, and the Abelian category of modules over

this diagram can be compared to Qcoh(Zk) ≃ Qcoh(OZk
|U) on equal terms. For example, one

can find q-analogues of line bundles on Zk and study their moduli spaces of vector bundles or
instantons. (In the context of formal deformation quantizations, these questions were studied
in [BG22].)

One can also find a corresponding q-deformation Aq of the endomorphism algebra A =
End(OZk

⊕ OZk
(1)) of a tilting bundle on Zk which is derived equivalent to Aq (see §§ 4.2–4.3).

4.2 Deformations via the tilting bundle

The pullback of the tilting bundle OP1 ⊕ OP1(1) on P1 along the projection Zk
π P1 is

OZk
⊕ OZk

(1), which is a tilting bundle on Zk. We have

A = End(OZk
⊕ OZk

(1)) ≃ k
(

x0, x1

y0,..., yk−1

...

)/
I , (4.11)

where I is the ideal generated by

x1yj−1 − x0yj

yjx0 − yj−1x1
1 ⩽ j ⩽ k − 1 (4.12)

and A is the reconstruction algebra for the 1
k (1, 1) singularity (cf. Wemyss [Wem11]). We use

the usual notation Qtilt for the quiver arising from the tilting bundle in (4.11) and label the left
vertex of Qtilt corresponding to OZk

by 0 and the right vertex corresponding to OZk
(1) by 1.
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4.2.1 Reduction system and Hochschild cohomology. For A = kQtilt/I as in (4.11), we can
give the following reduction system:

Rtilt =
{
(x1yj−1, x0yj), (yjx0, yj−1x1)

}
0<j⩽k−1

with S = {x1yj−1, yjx0}0<j⩽k−1 ,
(4.13)

and it is straightforward to check that Rtilt satisfies (⋄) for I. Indeed, the indices were chosen so
that their sum is preserved by reductions, and each path can thus be uniquely reduced to a path
such that the indices are as large as possible towards the right.

In fact, Rtilt can be obtained from the (reduced) noncommutative Gröbner basis for I with
respect to the following order ≺. Let p, q ∈ Qtilt

• , and let |−| denote the path length.

– If |p| < |q|, set p ≺ q.

– If |p| = |q| and deg(p) < deg(q), set p ≺ q, where deg is the degree defined on kQ by setting
deg(xi) = i for i = 0, 1 and deg(yj) = j for 0 ⩽ j ⩽ k − 1.

– If |p| = |q| and deg(p) = deg(q), let ≺ be defined as the lexicographical order which extends
x0 ≺ y0 ≺ x1 ≺ y1 ≺ y2 ≺ · · · ≺ yk−2 ≺ yk−1.

The reduction system Rtilt, see (4.13), has overlap ambiguities

S3 =
{
x1yjx0

}
0<j<k−1

and no higher ambiguities (that is, S⩾4 = ∅). Note that if k = 2, we also have S3 = ∅.

Relevant to the deformation theory are 2-cocycles, which for k ⩾ 3 are seen to be generated
as HH0(A)-module by α1, . . . , αk−1, β0, β1, β2 ∈ Hom(kS,A), where

αi(x1yj−1) = δi,je0 , βl(x1yj−1) = x0yj−1+l ,

αi(yjx0) = −δi,je1 , βl(yjx0) = 0 , (4.14)

where 1 ⩽ j ⩽ k − 1 and x0yk := x1yk−1. For k = 2, the 2-cocycles are generated by α1 and
βsymp defined as

α1(x1y0) = e0 , βsymp(x1y0) = e0 ,

α1(y1x0) = −e1 , βsymp(y1x0) = 0 . (4.15)

The cocycle condition for αi, β0, β1, β2 and βsymp can easily be checked by using Remark 2.9.
(Note that for k = 2, the 2-cochains β0, β1, β2 are also 2-cocycles, but they can be obtained from
βsymp by multiplying by the paths x0y0, x0y1, x1y1 viewed as elements in HH0(A) = Z(A).)

Under the natural isomorphism HH2(A) ≃ HH2(Zk), one may obtain the following correspon-
dence between “algebraic” 2-cocycles in HH2(A) and “geometric” 2-cocycles in HH2(Zk):

commutative noncommutative

algebraic αj βsymp βl

geometric zj ∂
∂u

∂
∂z ∧

∂
∂u zlu ∂

∂z ∧
∂
∂u

(k ⩾ 2) (k = 2) (k ⩾ 2)

(4.16)

where 1 ⩽ j ⩽ k−1 and 0 ⩽ l ⩽ 2 (cf. Lemma 4.4). Note that βsymp corresponds to the canonical
holomorphic symplectic form on the open Calabi–Yau surface TotOP1(−2) ≃ T∗P1.

4.2.2 Commutative deformations. We now construct a family of deformations of A which
correspond to “classical” geometric deformations of Zk.
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Let α1, . . . , αk−1 be as in (4.14). Consider the element

φ̃ = α1t1 + · · ·+ αk−1tk−1 ∈ Hom(kS,A) ⊗̂ (t1, . . . , tk−1) .

By Theorem 2.7, the element φ̃ is a Maurer–Cartan element of the L∞ algebra p
(
Qtilt, Rtilt

)
⊗̂

(t1, . . . , tk−1) since ⋆φ+φ̃ is associative on elements in S3 = {x0yjx1}0<j<k−1, as can be eas-
ily checked. Since each αi, and thus also φ̃, satisfies the condition (≺), the associated formal
deformation admits the algebra

Aφ+φ̃ := (A[t1, . . . , tk−1], ⋆φ+φ̃) ≃ kQtilt[t1, . . . , tk−1]/Iφ+φ̃

as an algebraization (see Proposition 2.10), where Iφ+φ̃ is the ideal generated by

x1yj−1 − x0yj − e0tj

yjx0 − yj−1x1 + e1tj
1 ⩽ j ⩽ k − 1 .

Evaluating this algebraization to ti λi for some λ = (λ1, . . . , λk−1) ∈ kk−1, we obtain an
actual deformation Aλ := Aφ+φ̃|ti=λi

of A.

Proposition 4.17. The algebra Aλ is Morita equivalent to its center Z(Aλ) ≃ e0Aλe0 ≃ e1Aλe1
precisely when λ = (λ1, . . . , λk−1) ̸= 0. In this case we have algebra isomorphisms

Z(Aλ) ≃ eiAλei ≃ k[z0, . . . , zk]
/(

rank
(
z0 z1+λ1 z2+λ2 ··· zk−1+λk−1
z1 z2 z3 ··· zk

)
⩽ 1

)
.

Proof. It follows from [Buc03, Proposition 1.9] that Aλ is Morita equivalent to e0Aλe0 if and
only if the restricted multiplication map

µe0 : Aλe0 ⊗e0Aλe0 e0Aλ Aλ

a⊗e0Aλe0 b ab

is surjective. If there exists a 1 ⩽ j ⩽ k − 1 such that λj ̸= 0, then we have

µe0

(
e0 ⊗e0Aλe0 e0 +

1
λj
yj−1 ⊗e0Aλe0 x1 − 1

λj
yj ⊗e0Aλe0 x0

)
= e0 + e1 = 1 .

Thus µe0 is surjective. If (λ1, . . . , λk−1) = 0, then e1 /∈ im(µe0). This yields that Aλ is Morita
equivalent to e0Aλe0 if and only if (λ1, . . . , λk−1) ̸= 0. We obtain that their centers are isomorphic
as algebras, namely Z(Aλ) ∼= e0Aλe0.

It is not difficult to show that there is an algebra isomorphism

f0 : k[z0, . . . , zk]
/(

rank
(
z0 z1+λ1 ... zk−1+λk−1
z1 z2 ... zk

)
⩽ 1

)
∼ e0Aλe0

determined by f0(z0) = −x0y0, f0(zk) = −x1yk−1, f0(zj) = −x0yj − λje0 for 1 ⩽ j ⩽ k − 1.
Similarly, we have an algebra isomorphism

f1 : k[z0, . . . , zk]
/(

rank
(
z0 z1+λ1 ... zk−1+λk−1
z1 z2 ... zk

)
⩽ 1

)
∼ e1Aλe1

determined by f1(z0) = −y0x0 and f1(zj) = −yj−1x1 for 1 ⩽ j ⩽ k − 1.

Geometrically, Proposition 4.17 reflects the fact that the nontrivial commutative deformations
of Zk induced by 1-cocycles in H1(TZk

) are smooth affine varieties (see [BG19, Theorem 6.18])
with coordinate rings Z(Aλ). From a singularity point of view, these affine varieties are obtained
from smoothening the 1

k (1, 1) singularity obtained by contracting the exceptional P1 ⊂ Zk with
self-intersection −k (cf. § 5.3).
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4.2.3 Noncommutative deformations. We now also construct a family of deformations of A
corresponding to quantizations of Poisson structures.

Let k ⩾ 3, and let β0, β1, β2 be as in (4.14). Using Theorem 2.7 one checks that the 2-cocycle
β0t0 + β1t1 + β2t2 is itself not a Maurer–Cartan element of p

(
Qtilt, Rtilt

)
⊗̂ (t0, t1, t2). However,

we may consider the element φ̃ ∈ Hom(kS,A) ⊗̂ (t0, t1, t2) given by φ̃(yjx0) = 0 and φ̃(x1yj−1)
equal to

−x0yj + x0yj−1t0 +

k−2∑
i=j

x0yit
i−j
2 (1 + t1 + t0t2) + x0yk−1t

k−j−1
2 (1 + t1) + x1yk−1t

k−j
2

for each 1 ⩽ j ⩽ k − 1. For instance, φ̃(x1yk−2) = x0yk−2t0 + x0yk−1t1 + x1yk−1t2. That is, φ̃
“corrects” the 2-cocycle β0t0+β1t1+β2t2 to a Maurer–Cartan element of p

(
Qtilt, Rtilt

)
⊗̂(t0, t1, t2)

by adding higher-order terms.

Proposition 4.18. (i) The element φ̃ is a Maurer–Cartan element of p
(
Qtilt, Rtilt

)
⊗̂(t0, t1, t2).

(ii) The formal deformation associated with φ̃ := β0t0 + β1t1 admits an algebraization

Aφ+φ̃ = (A[t0, t1], ⋆φ+φ̃) = kQtilt[t0, t1]/Iφ+φ̃ ,

where Iφ+φ̃ is the two-sided ideal generated by

x1yj−1 − x0yj−1t0 − x0yj(1 + t1) ,

yjx0 − yj−1x1

for 1 ⩽ j ⩽ k− 1. Evaluating the algebraization at µ = (µ0, µ1) ∈ k2, we obtain actual deforma-
tions of A corresponding to quantizations of Poisson structures on Zk.

Proof. By Theorem 2.7 it suffices to verify that ⋆ := ⋆φ+φ̃ is associative on elements in S3 =
{x1yjx0}0<j<k−1. This follows since both (x1 ⋆ yj) ⋆ x0 and x1 ⋆ (yj ⋆ x0) equal

x0yj−1x1t0 +
k−2∑
i=j

x0yix1t
i−j
2 (1 + t1 + t0t2) + x0yk−1x1t

k−j−1
2 (1 + t1) + x1yk−1x1t

k−j
2 .

Now assertion (ii) follows from Proposition 2.10, noting that g = β0t0 + β1t1 satisfies the
degree condition (≺) since x0yj−1, x0yj ≺ x1yj−1.

4.2.4 The Calabi–Yau case. For k = 2, the 1
2(1, 1) singularity is just the A1 singularity

whose minimal resolution Zk ≃ TotOP1(−2) ≃ T∗P1 is an open Calabi–Yau surface, and A is
the preprojective algebra of type Ã1.

Let Rtilt be the reduction system given in (4.13). Since S3 = ∅ it follows that any element
φ̃ ∈ Hom(kS,A) ⊗̂ m is a Maurer–Cartan element of p

(
Qtilt, Rtilt

)
⊗̂ m. Consider the Maurer–

Cartan element φ̃ = α1t1 + βsympt2 of p
(
Qtilt, Rtilt

)
⊗̂ (t1, t2) (cf. (4.15)). The corresponding

formal deformation (AJt1, t2K, ⋆φ+φ̃) admits an algebraization

(A[t1, t2], ⋆φ+φ̃) ≃ kQtilt[t1, t2]/Iφ+φ̃ , (4.19)

where Iφ+φ̃ is the two-sided ideal generated by

x1y0 − x0y1 − e0t1 − e0t2 ,

y1x0 − y0x1 + e1t1 .

Denote by Aλ,µ the algebra evaluating the algebraization (4.19) at t1 = λ and t2 = µ for
some λ, µ ∈ k.
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Proposition 4.20. (i) The subalgebras e0Aλ,µe0 and e1Aλ,µe1 are commutative if and only if
µ = 0, in which case Aλ,0 for λ ̸= 0 is Morita equivalent to a commutative deformation of the
A1 surface singularity.

(ii) If µ ̸= 0, then we have that

e0Aλ,µe0 ≃ U(sl2)
/(

C − λ2 − µ2

2µ2

)
and e1A0,1e1 ≃ U(sl2)

/(
C − λ2 + 2λµ

2µ2

)
,

where U(sl2) is the universal enveloping algebra of sl2 = ⟨H,X, Y ⟩ and C = XY + Y X + 1
2H

2

is the Casimir element.

Proof. Assertion (i) follows from [CH98, Theorem 0.4] and also from Proposition 4.17 for k = 2.

To see assertion (ii) one verifies that there is an algebra isomorphism f0 : U(sl2)/
(
C− λ2−µ2

2µ2

)
e0A0,1e0 given by

f0(H) =
2

µ
x0y1 +

λ+ µ

µ
e0 , f0(X) = − 1

µ
x0y0 and f0(Y ) =

1

µ
x1y1 .

Similarly, we have an algebra isomorphism f1 : U(sl2)/
(
C − λ2+2λµ

2µ2

)
e1A0,1e1 given by

f1(H) =
2

µ
y0x1 −

λ

µ
e1 , f1(X) = − 1

µ
y0x0 and f1(Y ) =

1

µ
y1x1 .

Remark 4.21. Since k = 2, note that the algebra Aλ,µ is the deformed preprojective algebra of

type Ã1 corresponding to (λ+ µ,−λ) with e0 being the special vertex. It follows from Crawley-
Boevey–Holland [CH98, Theorem 0.4(4)] that e0Aλ,µe0 has infinite global dimension if and only
λ = 0, where λ corresponds to the “commutative” direction in HH2(A). In this case we have
that e0A0,µe0 ≃ U(sl2)/

(
C + 1

2

)
, and it follows from Crawford [Cra18, Corollary 1.2.6] that

there is a triangulated equivalence of singularity categories Dsg(e0A0,µe0) ≃ Dsg(e0Ae0). The
latter is the singularity category of the A1 singularity, which stays unchanged under “purely
noncommutative” deformations induced by the holomorphic symplectic structure on Z2 but
becomes trivial whenever one also deforms in a commutative direction (that is, λ ̸= 0).

4.2.5 Variety of simultaneous deformations. Recall from § 4.2.1 that the reduction system
Rtilt is obtained from the noncommutative Gröbner basis for I with respect to the order ≺. Using
Theorem 2.11 we obtain an algebraic variety V≺ ⊂ Hom(kS,A) ≃ AN of actual deformations
of A and a natural groupoid G≺ V≺ whose orbits correspond to the isomorphism classes of
actual deformations.

If k = 2, there are no obstructions and the variety V≺ of simultaneous deformations is simply
the space Hom(kS,A)≺ ≃ A6. We note that the 3-dimensional linear subspace spanned by α1,
βsymp and β1 gives rise to the so-called deformed quantum preprojective algebras of type Ã1

studied by M. Kalck [Kal09] and S. P. Crawford [Cra18], where α1 and βsymp correspond to the
“deformed” part and β1 to the “quantum” part as β1 is the term giving rise to a “q-deformation”
of the preprojective relations.

Now let k ⩾ 3. In this case there are obstructions to simultaneous deformations, so it is
convenient to work with a smaller set of 2-cocycles in Hom(kS,A)≺. Let H ⊂ Hom(kS,A)≺ be
the k-linear subspace spanned by the 2-cocycles α1, . . . , αk−1, β0, β1, see (4.14), so thatH ≃ Ak+1.
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(Note that β2 ̸∈ Hom(kS,A)≺ .) Now consider the element

φ̃ = µ0β0 + µ1β1 +
k−1∑
j=1

λjαj ∈ H ⊂ Hom(kS,A)≺

with µ0, µ1, λ1, . . . , λk−1 ∈ k. Then φ̃ is a Maurer–Cartan element of p
(
Qtilt, Rtilt

)
if and only if

for each 1 ⩽ j ⩽ k− 2, we have (x1 ⋆ yj) ⋆ x0 = x1 ⋆ (yj ⋆ x0), where ⋆ = ⋆φ+φ̃. This is equivalent
to

µ0λj + µ1λj+1 = 0 for each 1 ⩽ j ⩽ k − 2 . (4.22)

Thus we obtain the following result.

Proposition 4.23. For k ⩾ 3, the equations (4.22) cut out an affine variety V = H∩V≺ ⊂ Ak+1

of simultaneous deformations of A.

For example, for k = 3, the variety V in Proposition 4.23 is isomorphic to an ordinary double
point threefold singularity (conifold) given by xy − zw = 0 in A4.

In § 5.3.2 this variety will also be viewed as a variety of actual simultaneous deformations of
the 1

k (1, 1) singularity.

4.3 Diagram algebra versus tilting bundle

Recall from Proposition 3.21 that on the level of formal deformations, the two approaches to
deformations of Qcoh(X) – via deformations of the diagram algebra OX |U! or via deformations
of the endomorphism algebra End E of a tilting bundle – are derived equivalent.

This also holds for actual deformations, as can be checked directly for the actual deformations
corresponding to commutative (§§ 4.1.1 and 4.2.2) and noncommutative deformations (§§ 4.1.2
and 4.2.3).

Although the derived equivalence between Qcoh(Zk) and Mod(A) lifts to their formal and
actual deformations, it may happen that A admits an algebraization that does not appear to
give rise to an algebraization of OZk

|U.1

In particular, consider the element Φ̃ ∈ Hom
(
kS, kQdiag/J

)
⊗̂ (t′0, t

′
1, t1, . . . , tk−1) given by

Φ̃(wx) = α(x)w , Φ̃(wy) = β(y)w , Φ̃(uf) =
k−1∑
j=1

fyjtj ,

Φ̃(uz) = α(z)u , Φ̃(vζ) = β(ζ)v ,

where α(x) = t′0 + xt′1 and β(y) =
∑∞

i=1 y(−yt′0 − t′1)
i. That is, Φ̃ corresponds to arbitrary

commutative and certain noncommutative deformations – indeed, exactly those corresponding
to the 2-cocycles α1, . . . , αk−1, β0, β1 in § 4.2.5. By Theorem 2.7 it follows that Φ̃ is a Maurer–
Cartan element if and only if

t′0tj + t′1tj+1 = 0 for each 1 ⩽ j ⩽ k − 2 . (4.24)

1A similar phenomenon can also be observed for P2 when comparing deformations of the diagram OP2 |U, where U is
the closure of the standard affine open cover {U0, U1, U2} under intersections, to deformations of the endomorphism
algebra of the tilting bundle E = OP2 ⊕ OP2(1) ⊕ OP2(2). Deformations of the 15-dimensional algebra End E
are unobstructed, so one can obtain a versal family of deformations over

(
A10, 0

)
, where dimHH2

(
P2

)
= 10,

corresponding geometrically to quantizations of Poisson structures on P2. However, only some of these Poisson
structures give rise to algebraizable deformations of the diagram OP2 |U.
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We thus obtain a formal deformation (OZk
|U! ⊗̂B, ⋆φ+φ̃) of the diagram algebra OZk

|U! over the
complete local Noetherian k-algebra

B = kJt′0, t
′
1, t1, . . . , tk−1K/(t′0tj + t′1tj+1)1̂⩽j⩽k−2 .

Although we saw in § 4.1 that all purely commutative deformations of OZk
|U! and certain purely

noncommutative deformations admit algebraizations, the formal simultaneous deformation over
B does not appear to admit an obvious algebraization. However, comparing (4.22) and (4.24),
we note that B is exactly the formal completion of the coordinate ring of the variety V of
actual deformations of A given in Proposition 4.23, reflecting the fact that OZk

|U! and A =
End(OZk

⊕ OZk
(1)) have the same formal deformation theory.

5. Deformations of singularities via their noncommutative resolutions

In this section we apply the techniques developed thus far to study deformations of singular-
ities via their noncommutative resolutions. Let X = SpecC be an affine variety with an iso-
lated singularity. The commutative deformation theory of the singularity is well understood:
deformations are parametrized by the second Harrison cohomology group Har2(C), which is
finite-dimensional when the singularities are isolated, with obstructions in Har3(C) (see for ex-
ample Stevens [Ste03]). For many classes of singularities, versal deformation spaces have been
constructed [Alt97, Ste91, Ste03]. These versal deformation spaces are varieties of “actual” de-
formations which completely describe the commutative deformation theory of the singularity. In
particular, the formal completion of the versal family at the point corresponding to the original
algebra captures the formal deformation theory of C.

However, Har2(C) is usually strictly contained in HH2(C), and the latter is often infinite-
dimensional even if C has an isolated singularity (see § 5.3 below for an example). As HH2(C)
parametrizes associative deformations of C, an unobstructed 2-cocycle will parametrize a formal
noncommutative deformation of C, but in general formal noncommutative deformations of C will
not necessarily admit an algebraization, so that one cannot expect a versal deformation space
for the full associative deformation theory of C to exist.

However, using the notion of an admissible order for a suitable quiver with relations, one can
construct varieties V≺ of actual deformations of C which contain at least some (often interesting)
noncommutative deformations. In § 5.1, we show how to use noncommutative resolutions of the
singularity to obtain such varieties, and in § 5.3 we illustrate this for the cyclic 1

k (1, 1) surface
quotient singularities, which can be linked to the geometry of the deformation theory of Qcoh(Zk)
described in § 4.

5.1 Deformations of noncommutative resolutions

Let C be a (singular) Noetherian commutative k-algebra. A noncommutative resolution of C is a
k-algebra of the form A = EndC(C⊕M), where M is a finitely generated C-module, such that A
has finite global dimension (see for example [VdB04, DITV15]). Let e ∈ A be the idempotent
of A corresponding to the direct summand C of C ⊕M so that C = eAe. Writing A as kQ/I,
with e corresponding to a vertex of Q, we have the following general result.

Proposition 5.1. Let A = EndC(C ⊕M) ≃ kQ/I be a noncommutative resolution of C. Let R
be a reduction system satisfying (⋄) for I. Then p(Q,R) controls the deformation theory of A.

Moreover, for any Maurer–Cartan element φ̃ of p(Q,R) ⊗̂ m, the deformation Âφ+φ̃ of A
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induces a deformation eÂφ+φ̃e of C.

For any degree condition (≺), the variety V≺ of actual deformations of A gives rise to a family
of actual deformations of C.

Proof. The first assertion follows from Theorem 2.6. For the second assertion, note that the
restriction map h(A) h(eAe) is a morphism of DG Lie algebras. Composing this with the L∞
quasi-isomorphism in Theorem 2.6, we obtain an L∞ morphism p(Q,R) h(eAe) which thus
induces a map between the deformation functors. For any Aλ ∈ V≺, the algebra eAλe is an actual
deformation of C = eAe.

Note that noncommutative resolutions of a commutative singularity can sometimes be ob-
tained from geometric resolutions of the singularity, as is the case for cyclic quotient surface
singularities (see Wemyss [Wem11] and § 5.3 below for a particular case).

Finding “actual” noncommutative deformations of singularities is in general difficult. By using
Kontsevich’s formality morphism, M. Filip [Fil18] showed that Poisson structures on singular
affine toric varieties can always be formally quantized. From this formal statement, however, it
is unclear how to construct any explicit algebraizable quantizations. Theorem 5.1 shows that
we can use the degree condition (≺) to construct actual noncommutative deformations, for
example via noncommutative resolutions of the singularity, giving a whole variety V≺ of actual
deformations.

5.2 Deformations and singularity categories

Recall that the singularity category Dsg(A) of a Noetherian (not necessarily commutative) algebra
A is defined as the Verdier quotient of the bounded derived category of finitely generated A-
modules by the full subcategory of perfect complexes. This notion was first introduced by R.-
O. Buchweitz [Buc86] (cf. [Buc21]) and then rediscovered by D.O. Orlov [Orl04] in the context
of Landau–Ginzburg models in homological mirror symmetry.

One may now ask whether the singularity category changes under deformations of the singu-
larity. In particular, about the variety V≺ obtained from actual deformations of a noncommutative
resolution, we can ask the following question.

Question 5.2. For which points v ∈ V≺ does eAve have the same singularity category as C = eAe?

The singularity category of a singular algebra is always nontrivial. In general, we expect the
singularity category of eAve to become “smaller” for commutative deformations. For example,
if the induced deformation of the singularity is smooth, the singularity category is trivial. On
the other hand, Remark 4.21 showed that for a certain purely noncommutative deformation
of the A1 singularity, the singularity category remained invariant. Indeed, it seems natural to
conjecture that “purely noncommutative” deformations of commutative isolated singularities
leave the singularity category invariant.

5.2.1 A deformation-theoretic perspective. In order to determine whether two algebras have
equivalent singularity categories, one generally needs a larger set of tools and techniques than
those introduced in this article. (See for example Kalck–Karmazyn [KK17] for singular equiv-
alences between cyclic quotient surface singularities and certain finite-dimensional algebras.)
However, a general deformation-theoretic framework for answering the above question is the
following. We have an L∞ morphism

p(Q,R) h(eAe) hsg(eAe) , (5.3)
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where the first arrow is the L∞ morphism given in the proof of Proposition 5.1 and hsg(eAe) =(
C•+1
sg (eAe, eAe), d, [−,−]

)
is a DG Lie algebra whose underlying cochain complex is the (shifted)

singular Hochschild cochain complex C•
sg(eAe, eAe) which computes the singular Hochschild co-

homology HH•
sg(eAe) (see [Wan21]). The DG Lie algebra hsg(eAe) admits h(eAe) as a DG Lie

subalgebra, and B. Keller’s conjecture in [Kel18] implies in particular that the deformation theory
of the DG singularity category of eAe is controlled by hsg(eAe).

The L∞ morphism (5.3) induces a map between the Maurer–Cartan spaces. Let φ̃ be a Mau-
rer–Cartan element of p(Q,R), and let Aφ+φ̃ be the corresponding (actual) deformation of A. If
the image of φ̃ is gauge equivalent to the zero Maurer–Cartan element of hsg(eAe), then by the
general philosophy of deformation theory, we expect that the singularity category Dsg(eAφ+φ̃e)
does not change. In other words, one expects that a deformation has the same singularity category
when the corresponding 2-cocycle lies in the kernel of the map HH2(A) HH2

sg(eAe) induced
by (5.3).

Let us point to some evidence for this. If eAe is an affine hypersurface with an isolated sin-
gularity, then HH2

sg(eAe) is isomorphic to the Harrison cohomology Har2(eAe) (see Lemma 2.14

and [Kel18, § 4]), so that the kernel of the map HH2(eAe) HH2
sg(eAe) coincides with the

direct summand N in Lemma 2.14, which correspond to purely noncommutative deforma-
tions. In line with the above reasoning, this gives a deformation-theoretic interpretation for
Crawford’s singular equivalence in Remark 4.21 since the 2-cocycle corresponding to the de-
formation e0A0,µe0 ≃ U(sl2)/

(
C + 1

2

)
lies in N (see Remark 2.16). Note that the image of

the 2-cocycle corresponding to the deformation e0Aλ,µe0 for λ ̸= 0 is nonzero along the map
HH2(eAe) HH2

sg(eAe) and the singularity category Dsg(e0Aλ,µe0) does indeed change – it is
trivial since e0Aλ,µe0 is of finite global dimension.

5.3 The 1
k
(1, 1) surface singularities

We now apply the above scheme of studying noncommutative deformations of singularities via
their noncommutative resolutions to the 1

k (1, 1) singularity, which also allows us to apply the
results obtained in § 4. In the rest of this section we work over k = C.

Let Xk be the 1
k (1, 1) singularity

Xk = C2/Γ = SpecC ,

where

C = C[z0, . . . , zk]/(zizj+1 − zi+1zj)0⩽i<j<k

and Γ < GL2(C) is a cyclic group of order k with the generator acting on C2 by(
ω 0
0 ω

)
for ω some primitive kth root of unity. (For k = 2, we have that Γ < SL2(C) and the 1

2(1, 1)
singularity is the “usual” A1 surface singularity.)

Note that the coordinate ring C of Xk is the ring of global functions on Zk = TotOP1(−k) and
Zk is the minimal resolution of Xk. Recall from § 4 that Zk admits a tilting bundle OZk

⊕OZk
(1)

whose endomorphism algebra A is given in (4.11). Since Zk is smooth, A is of finite global
dimension, and in fact [Wem11] the algebra A is a noncommutative resolution of Xk (cf. § 5.1).
Indeed, letting e0 denote the idempotent corresponding to the direct summand OZk

, we have
e0Ae0 = C.
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Writing A=CQtilt/I and letting Rtilt be the reduction system (4.13), we saw that p
(
Qtilt, Rtilt

)
controls the deformation theory of Qcoh(Zk). As in (5.3), we have an L∞ morphism

p
(
Qtilt, Rtilt

)
h(C) .

Deformations of Qcoh(Zk) described in § 4 thus induce deformations of Xk = SpecC.

5.3.1 Commutative deformations. Let us first recall the commutative deformation theory
of the singularity Xk = SpecC. Note that the relations of C can be written in matrix form as
follows:

C ≃ C[z0, . . . , zk]
/ (

rank
( z0 z1 ··· zk−2 zk−1
z1 z2 ··· zk−1 zk

)
⩽ 1

)
(5.4)

≃ C[z0, . . . , zk]
/ (

rank
( z0 z1 ··· zk−3 zk−2

z1 z2 ··· zk−2 zk−1
z2 z3 ··· zk−1 zk

)
⩽ 1

)
.

The commutative deformations of C are parametrized by the Harrison cohomology Har2(C) ⊂
HH2(C). We have a decomposition

Har2(C) ≃ Ck−1 ⊕ Ck−3

and for all k ⩾ 2, there exists a versal family with a component Ak−1 called Artin component
corresponding to the first summand of Har2(C) (see for example [Alt95, Pin74, Rie74, Ste91]).
For k = 4, the versal family also contains a second irreducible component A1 and for k > 4 an
embedded component at 0 ∈ Ak−1 (see [Ste03, Chapter 1, p. 11]). In the Artin component the
fibres of this family may be described explicitly by modifying the matrices in the presentation
(5.4) to read (

z0 z1 + λ1 z2 + λ2 · · · zk−1 + λk−1

z1 z2 z3 · · · zk

)
,

where (λ1, . . . , λk−1) ∈ Ck−1.

The algebras e0Aλe0 in Proposition 4.17 correspond to the Artin component in the versal
family of commutative deformations of C = e0Ae0. That is, commutative deformations of Zk

parametrized by H1(TZk
) ≃ Ck−1 as described in § 4 induce commutative deformations of the

1
k (1, 1) singularity.

5.3.2 Simultaneous deformations. Recall from Proposition 4.23 the variety V ⊂ V≺. Then
from Proposition 5.1 we obtain the following.

Corollary 5.5. Each point v = (µ0, µ1, λ1, . . . , λk−1) in the variety V gives an actual deforma-
tion e0Ave0 of e0Ae0 ≃ C, where we denote by Av the actual deformation of A corresponding to
a point v ∈ V .

Note that for λ1 = · · · = λk−1 = 0, the equations defining V are satisfied for any µ0, µ1

so that the points v = (µ0, µ1, 0, . . . , 0) correspond to “purely noncommutative” deformations
of Xk induced by algebraizable deformation quantizations of algebraic Poisson structures on Zk.
Similarly, for µ0 = µ1 = 0, one obtains the irreducible (k− 1)-dimensional component of “purely
commutative” deformations of Xk. All other points in V may be viewed as “simultaneously
commutative and noncommutative” deformations of Xk.

Remark 5.6. For each µ1 ∈ C, the point v = (0, µ1, 0, . . . , 0) corresponds to a “q-deformation”
e0Ave0 of Xk. In this case we have

e0Ave0 ≃ C⟨z0, . . . , zk⟩/I ,
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where I is the two-sided ideal generated by

zizj − qj−izjzi for 0 ⩽ i < j ⩽ k ,

zjzi − qzj+1zi−1 for 1 < i ⩽ j < k ,

zjz1 − zj+1z0 for 1 ⩽ j < k ,

where q = 1+µ1. (This can be seen by constructing an algebra isomorphism which sends x1yk−1

to z0 and x0yk−i to zi for each 1 ⩽ i ⩽ k.) It turns out that this family of q-deformations leaves
the singularity category of the 1

k (1, 1) singularity invariant (cf. Remark 4.21 and Question 5.2).
The details for the general case of cyclic quotient surface singularities will appear in future work
joint with M. Kalck.
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Rie74 O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen),
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